
Persistence of randomly coupled fluctuating interfaces

Satya N. Majumdar1,2 and Dibyendu Das3
1Laboratoire de Physique Théorique (UMR C5152 du CNRS), Université Paul Sabatier, 31062 Toulouse Cedex, France

2Laboratoire de Physique Théorique et Modèles Statistiques, Université Paris-Sud, Bât. 100, 91405 Orsay Cedex, France
3Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

sReceived 22 November 2004; published 22 March 2005d

We study the persistence properties in a simple model of two coupled interfaces characterized by heightsh1

andh2, respectively, each growing over ad-dimensional substrate. The first interface evolves independently of
the second and can correspond to any generic growing interface, e.g., of the Edwards-Wilkinson or of the
Kardar-Parisi-Zhang variety. The evolution ofh2, however, is coupled toh1 via a quenched random velocity
field. In the limitd→0, our model reduces to the Matheron–de Marsily model in two dimensions. Ford=1, our
model describes a Rouse polymer chain in two dimensions advected by a transverse velocity field. We show
analytically that after a long waiting timet0→`, the stochastic processh2, at a fixed point in space but as a
function of time, becomes a fractional Brownian motion with a Hurst exponent,H2=1−b1/2, whereb1 is the
growth exponent characterizing the first interface. The associated persistence exponent is shown to beus

2=1
−H2=b1/2. These analytical results are verified by numerical simulations.
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I. INTRODUCTION

The survival probabilityPstd that a stochastic processXstd
does not cross zero up to timet is a quantity of long standing
interest in probability theory and with many practical appli-
cationsf1g. The derivativeFstd=−dP/dt is called the first-
passage probabilityf2g. This subject has seen a resurgent
interest over the last decade in the context of many body
nonequilibrium systems where the stochastic processXstd de-
notes a local time dependent field in a spatially extended
evolving system. For example, in the case of the Ising model
evolving under the Glauber dynamics, the relevant stochastic
processXstd is the spinsistd at a fixed sitei as a function of
time t and Pstd then denotes the probability that the spinsi

does not flip up to timet f3g. In this context, the survival
probability Pstd thus measures the “persistence” of a local
field to remain in its initial state. In many of these nonequi-
librium systems, the persistence has been found to decay as a
power law at late times,Pstd, t−u. The exponentu is called
the persistence exponent and has been a subject of much
theoretical, numerical, and experimental studies in recent
times f4g. The exponentu is very hard to calculate analyti-
cally even in simple systems such as the linear diffusion
equation starting from random initial conditionsf5g. The rea-
son for this difficulty can be traced back to the fact that the
spatial interactions in these extended systems makes the
local stochastic fieldXstd a “non-Markovian” process in
time f4g.

Apart from these pure systems, persistence has also been
studied in systems with quenched disorderf6,7g. In the pres-
ence of disorder, the exact calculation of persistencePstd is
nontrivial even for a single particle without any spatial inter-
action, though some analytical results have been obtained
recently. For example, the asymptotic results for the persis-
tence of a particle moving in a random Sinai potential in one
dimension have been obtained both in the case of a vanishing
external fieldf8–10g and also for nonzero external fieldf11g.

Another solvable example is the persistence of a single par-
ticle advected by a layered random velocity fieldf12–14g.

The purpose of this paper is to present analytical results
for the persistencePstd in a system with both spatial inter-
action and disorder. Our system consists of two growingsd
+1d-dimensional interfaces whered refers to the dimension
of the substrate on which the surfaces grow and 1 refers to
the time t. The two interfaces are characterized by their
heightsh1sr ,td andh2sr ,td, respectively. In our model, while
the heighth1 of the first interface evolves independently of
h2, the evolution ofh2 is driven by a velocity that is a ran-
dom quenched function ofh1. This random velocity repre-
sents the disorder in the system. The model is detailed in
Sec. II.

There are two motivations for studying this model:
sid We will show later in Sec. III that our model corre-

sponds to different well known physical systems for different
values of the spatial dimensiond. For example, in the limit
d→0, our model reduces to the Matheron–de Marsily model
where one studies the motion of a single Brownian particle
in a two-dimensional plane in the presence of a transverse
random velocity fieldf15g. On the other hand, ford=1, we
will show that our model describes the evolution of a Rouse
polymer chainf16g sa Rouse chain consists of a set of beads
or monomers connected by harmonic springsd moving in a
two-dimensional plane and advected by a transverse random
velocity field. While the transport properties in this latter
model are well understoodf17–19g, the persistence proper-
ties are less understood. The analytical results obtained in
this paper for the persistence in our model for generald will
apply to these models in the limiting casesd=0 andd=1.

sii d The persistence properties of a single interface have
been studied extensively both theoreticallyf20–27g and more
recently they have been measured experimentally in a system
of fluctuating steps on Si-Al surfacesf28g. In the experimen-
tal system, there are many step edges, each corresponding to
a single interface. If the step edges are sufficiently separated
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from each other, they can be considered as independently
growing interfaces. However, in general, there will always be
an interaction, albeit weak, between two step edges and their
motions will be coupled. Hence it is important to study per-
sistence in models where the interface heights are coupled.
Motivated by this observation, we study here the persistence
in a simple model of coupled interfaces. While this model is,
by no means, a true representative of the actual experimental
situation, the advantage is that it represents a minimal model
with coupling for which one can calculate the persistence
properties analytically.

The paper is organized as follows. In Sec. II, we define
the model precisely and state our main results. In Sec. III we
consider the two limiting casesd→0 and d=1 where our
model reduces to two well known models. In Sec. IV we
point out our strategy to compute the persistence exponents
analytically. In Sec. V, we map the relevant stochastic pro-
cess into a fractional Brownian motionsFBMd and then us-
ing a well known first-passage property of FBM, we calcu-
late the persistence exponents analytically. Section VI
considers a generalization to other types of interfaces. Sec-
tion VII contains details of numerical results, and finally we
conclude with a summary and outlook in Sec. VIII.

II. MODEL AND MAIN RESULTS

We consider two interfaces characterized by their heights
h1sr ,td and h2sr ,td growing on ad-dimensional substrate
according to the following evolution equations:

]h1

]t
= ¹2h1 + h1sr ,td, s1d

]h2

]t
= ¹2h2 + v„h1sr ,td… + h2sr ,td, s2d

whereh1 andh2 represent the thermal Gaussian noises that
are uncorrelated with each other, each has zero mean, and
their correlators are given by

kh1sr 1,t1dh1sr 2,t2dl = f4pa2g−d/2e−ur 1 − r 2u2/4a2
dst1 − t2d,

s3d

kh2sr 1,t1dh2sr 2,t2dl = f4pa2g−d/2e−ur 1 − r 2u2/4a2
dst1 − t2d,

s4d

wherea denotes the range of the correlator and serves as a
short distance cutoff. Ford,2 where the interface roughens
with time, the short distance cutoff plays no important role
and one can safely take the limita→0 and replace the cor-
relators in Eqs. s3d and s4d by delta functions, i.e.,
f4pa2g−d/2e−ur 1− r 2u2/4a2→dsr 1−r 2d. However, ford.2, Eqs.
s1d and s2d exhibit ultraviolet divergences and one needs to
keep a finitea in order thatkh1

2l andkh2
2l remain finite in the

t→` limit.
The first interfaceh1 evolves freely according to Eq.s1d

which is precisely the celebrated Edwards-Wilkinson equa-
tion f29g in sd+1d dimensions. On the other hand, the evo-

lution of the second interfaceh2 in Eq. s2d, in addition to
having the Laplacian and the noise term, is coupled to the
heighth1 of the first interface via the quenched random ve-
locity v(h1sr ,td) which is also considered to be a Gaussian
with the following moments:

vsh1d = 0, s5d

vsh1dvsh18d = dsh1 − h18d, s6d

wheres¯d denotes averages over the different realizations of
the quenched velocity fieldvsh1d.

We are interested in the following persistence probabili-
ties at a fixed positionr in space:

P1st,t0d = Probfh1sr ,t8d Þ h1sr ,t0d

for all t8:t0 , t8 , t0 + tg, s7d

P2st,t0d = Probfh2sr ,t8d Þ h2sr ,t0d

for all t8:t0 , t8 , t0 + tg. s8d

The former represents the probability that the heighth1sr ,t8d
of the first interface at a fixed pointr in space does not return
to its value att0 within the time intervalft0,t0+ tg. The latter
represents the same probability for the second interface. The
persistence probabilityP1st ,t0d for the free Edwards-
Wilkinson equation in Eq.s7d has been studied both analyti-
cally and numericallyf20g. It is known that for d,2,
P1st ,t0d has a power law decay for larget characterized by a
nontrivial persistence exponent and the value of this expo-
nent depends on whether the waiting timet0=0 sno return to
the initial conditiond or t0→` sno return to a stationary con-
figurationd f20g,

P1st,t0 = 0d , t−u0
1
, s9d

P1st,t0 → `d , t−us
1
, s10d

where the subscripts 0 ands in the exponents refer respec-
tively to the probabilities of no return to the initial condition
st0=0d and no return to a stationary configurationst0→`d.
The superscript 1 refers to the first interface. It turns out that
the exponentu0

1 is hard to determine analytically and is
known only numerically. For example,u0

1=1.55±0.02 ins1
+1d dimensionsf20g. On the other hand, the exponentus

1 was
computed analyticallyf20g by mapping the processh1 in the
t0→` limit to a FBM and then using a known first-passage
result of FBM. For alld,2, one getsf20g

us
1 = s2 + dd/4. s11d

For d=1 this givesus
1=3/4, aresult that was recently veri-

fied experimentally in a system of fluctuatings1+1d-
dimensional steps on Si-Al surfacesf28g. Ford.2, we show
that the persistenceP1st ,t0→`d decays faster than a power
law for larget, stretched exponentially for 2,d,4 and ex-
ponentially ford.4.

In this paper, we study the persistence probabilityP2st ,t0d
of the second interface in Eq.s2d. As in the case of the first
interface, we find that for large intervalt
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P2st,t0 = 0d , t−u0
2
, s12d

P2st,t0 → `d , t−us
2
, s13d

where the superscript 2 in the exponents refer to the second
interface. While we were not able to compute the exponent
u0

2, we calculated the exponentus
2 analytically for alld,2,

us
2 = s2 − dd/8. s14d

For d.2, we argue that the persistenceP2st ,t0→`d tends to
a constant ast→`.

Furthermore, we were able to generalize this result to the
case when the second interface evolves by Eq.s2d but the
first interface is any generic growing surface, evolving not
neccesarily by the Edwards-Wilkinson equation. For ex-
ample, the first interface may evolve by the Kardar-Parisi-
Zhang sKPZd equationf30g. In general, this first interface
will be characterized by a growth exponentb1 and a dynami-
cal exponentz1 defined via the scaling form of the second
moment of the height differences between two points in
space, kfh1sr 1,t1d−h1sr 2,t2dg2l<ut2−t1u2b1fsur 1−r 2uz1/ ut2

−t1ud. For example, for thes1+1d-dimensional Edwards-
Wilkinson equation one hasb1=1/4 andz1=2, whereas for
the s1+1d-dimensional KPZ equation one hasb1=1/3 and
z1=3/2 f31g. Our main result is to show that

us
2 = b1/2. s15d

In particular, Eq.s15d predicts that ins1+1d dimensions, if
the first interface evolves via the KPZ equation,us

2=1/6. In
Sec. VII we show that the numerical results are consistent
with this theoretical prediction.

III. LIMITING CASES

In this section we show that in the two limiting cases
d→0 andd=1, our model defined by Eqs.s1d ands2d reduce
respectively to two well studied models.

A. Limit d\0

In the limit d→0, there is no “space” variable in the
problem. Thus the Laplacian terms on the right-hand side of
Eqs. s1d and s2d drop out and also the noise variables no
longer have anyr dependence. Interpretingh1=x andh2=y
as the coordinatessx,yd of a single particle on a two-
dimensional plane, Eqs.s1d and s2d reduce to

dx

dt
= h1std, s16d

dy

dt
= v„xstd… + h2std. s17d

These equations represent precisely the Matheron–de Mars-
ily sMdMd model f15g where a single Brownian particle
moves in a two-dimensional plane in the presence of a trans-
verse quenched random velocity fieldvsxd. This model was
originally introduced to study the hydrodynamic dispersion

of a tracer particle in porous rocksf15g. While the transport
properties in this model were well understoodf32–34g, the
study of persistence properties in this model are relatively
recentf12,13g. The persistence probabilities defined in Eqs.
s7d ands8d reduce, in this context, to the following probabili-
ties:

P1st,t0d = Probfxst8d Þ xst0d for all t8:t0 , t8 , t0 + tg,

s18d

P2st,t0d = Probfyst8d Þ yst0d for all t8:t0 , t8 , t0 + tg.

s19d

The first probabilityP1st ,t0d is simply the probability of no
return to its initial position of a one-dimensional Brownian

motion and henceP1st ,t0d, t−u0,s
1

where u0
1=us

1=1/2. The
probability P2st ,t0d associated with they coordinate is non-
trivial. Based on heuristic arguments and numerical simula-
tions, Redner showed thatu0

2=1/4 f12g. More recently, it
was proved analytically thatu0

2=us
2=1/4 bymapping the sto-

chastic processystd to a FBM and then using a known first-
passage property of the latterf13g. The resultus

2=1/4 isthus
a special case of our result in Eq.s14d of the interface model
in the limit d→0. Incidentally, the exponentu0

2=1/4 hap-
pens to be generic for a class of transverse velocity fields and
occurs even when the tranverse velocity field is a determin-
istic but an odd function ofx, i.e., vsxd=−vs−xd f35,36,14g.

B. Cased=1

Let us consider a Rouse polymer chain embedded in a
two-dimensional plane. The chain consists of beads con-
nected by harmonic springsf16g. In addition, the chain is
advected by a random layered velocity field as shown in Fig.
1. Let fxnstd ,ynstdg denote the coordinates of thenth bead at
time t which evolve with time according to the following
equations of motion:

dxn

dt
= Gsxn+1 + xn−1 − 2xnd + h1sn,td, s20d

FIG. 1. A Rouse chain in a random layered velocity field in two
dimensions.
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dyn

dt
= Gsyn+1 + yn−1 − 2ynd + v„xnstd… + h2sn,td, s21d

where G denotes the strength of the harmonic interaction
between nearest neighbor beads,h1sn,td and h2sn,td repre-
sent the Gaussian thermal noises along thex andy directions,
respectively, and are delta correlated. The velocity fieldvsxd
is a random quenched function ofx taken to be a Gaussian
with the following moments:

vsxd = 0, s22d

vsxdvsx8d = dsx − x8d. s23d

For a finite chain withN beads, Eqs.s20d ands21d are valid
only for the sN−2d interior beads. The two boundary beads
will have slightly different equations of motion. However,
we will only focus here on an infinitely large chainsN
→`d so that the system is translationally invariant along the
length of the chain and the boundary conditions are irrel-
evant.

Note that in the absence of the harmonic interaction term,
i.e., whenG=0, this model reduces precisely to a single par-
ticle MdM model discussed in the previous subsection. In
presence of the harmonic interaction, the transport properties
in this model have been studied recentlyf17–19g. However,
the persistence properties forGÞ0 are nontrivial. One can
define the following persistence probabilities:

P1st,t0d = Probfxnst8d Þ xnst0d for all t8:t0 , t8 , t0 + tg,

s24d

P2st,t0d = Probfynst8d Þ ynst0d for all t8:t0 , t8 , t0 + tg,

s25d

where the former represents the probability that thex coor-
dinate of a beadssay thenth beadd does not return to its
position at timet0 within the time intervalft0,t0+ tg, while
the latter represents the same probability for they coordinate
of the same bead. For an infinite chain, the system is trans-
lationally invariant along the length of the chain and hence
these persistence probabilities do not depend on the bead
label n.

Since we are interested in the late time properties, one can
conveniently replace the harmonic interaction term in Eqs.
s20d and s21d by a continuous Laplacian operator,

]x

]t
=

]2x

]s2 + hxss,td, s26d

]y

]t
=

]2y

]s2 + v„xss,td… + hyss,td, s27d

wheres denotes the distance along the chain and we have
rescaled the time to set the coefficient in front of the Laplac-
ian to be unity. Interpretingx;h1 and y;h2, Eq. s26d and
s27d reduce precisely to thed=1 version of our model de-
fined in Eqs.s1d ands2d. Thus substitutingd=1 in our results
for the persistence exponents in Eqs.s11d ands14d, we obtain
the persistence exponents for the polymer problem. In par-

ticular, for the probability of no return to a stationary con-
figurationft0→` limit in Eqs. s24d ands25dg of the polymer,
we have for large intervalt,

P1st,t0 → `d , t−3/4, s28d

P2st,t0 → `d , t−1/8, s29d

where the exponents 3/4 and 1/8 are obtained by substitut-
ing d=1 in Eqs. s11d and s14d, respectively. Interestingly,
for G=0, i.e., in the single particle MdM model, the corres-
ponding probabilities decay asP1st ,t0→`d, t−1/2 and
P2st ,t0→`d, t−1/4, as discussed in the previous subsection.
Thus switching on the harmonic interaction strengthG has
opposite effects onP1 and P2. While the probability
P1st ,t0→`d decays faster as,t−3/4 scompared to,t−1/2

when G=0d in presence of interactionG, the probability
P2st ,t0→`d decays slower as,t−1/8 whenG is switched on
scompared to,t−1/4 whenG=0d.

IV. STRATEGY TO COMPUTE THE PERSISTENCE
EXPONENTS

The stochastic processh1sr ,td in Eq. s1d for a fixed r , as
a function of timet, is Gaussian albeit non-Markovian. The
non-Markovian property arises due to the Laplacian term
that generates interaction between heights at two different
space points. The processh2sr ,td in Eq. s2d for fixed r is
similarly non-Markovian and moreover it is non-Gaussian
due to the quenched velocity field in Eq.s2d. Analytical cal-
culation of the persistence exponent is known to be very hard
for a non-Markovian process even if the process is Gaussian
f4g. For a non-Gaussian process it is even harder in general.
However, in certain cases, it may be possible to map the
relevant stochastic process into a FBM and then one can use
a known first-passage property of FBM to calculate the per-
sistence exponent analytically. This strategy has been suc-
cessful in the past to compute analytically the persistence
exponents in a number of problems even though the relevant
processes were non-Gaussian and/or non-Markovian
f13,20–22,26,27g. In particular, this strategy was used in Ref.
f20g to calculate the exponentus

1=s2+dd /4 in Eq. s11d for
the first interface evolving freely with a Edwards-Wilkinson
dynamics. Here we exploit the same strategy to compute the
exponentus

2=s2−dd /8 in Eq. s14d for the second interface.
Before proceeding further, it is then useful at this point to

summarize the definition and the known first-passage prop-
erty of a FBM. A stochastic processXstd swith zero mean
EfXstdg=0d is called a FBM if its incremental two-time cor-
relation functionCst1,t2d=Ef(Xst1d−Xst2d)2g is sid station-
ary, i.e., depends only on the time differenceut2− t1u, andsii d
grows asymptotically as a power law,

Cst1,t2d , ut2 − t1u2H, ut2 − t1u @ 1. s30d

The parameter 0,H,1 is called the Hurst exponent that
chracterizes the FBMf37g andEf¯g denotes the expectation
value over all realizations of the processXstd. For example,
an ordinary Brownian motion corresponds to a FBM with
H=1/2. Thezero crossing properties of a FBM has been
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studied extensively in the pastf38–40,20g. The particular
property that is useful for our purpose is the fact that the
probability that a FBM does not cross zero up to timet
decays as a power law at late times,Pstd, t−u with u=1
−H f40,20g. Note that this resultu=1−H holds for any zero
mean process that satisfies the defining characteristicssid and
sii d above of a FBM. In particular, it holds even if the process
is non-Gaussian and/or non-Markovian as long it satisfiessid
and sii d above. A simple proof of this result is given in Ref.
f20g. Our strategy in the next section would be to first show
that indeed ford,2, the processesh1sr ,td and h2sr ,td in
Eqs.s1d ands2d, for fixed r and in the limitt0→`, do satisfy
the characteristicssid andsii d of a FBM with Hurst exponents
H1=s2−dd /4 and H2=s6+dd /8, respectively, and then use
the powerful resultu=1−H stated above to prove thatus

1

=s2+dd /4 andus
2=s2−dd /8. For the free interfaceh1 in Eq.

s1d this mapping to the FBM was already done in Ref.f20g,
but we will include it Sec. V A for completeness. The corre-
sponding calculations forh2 will be detailed in Sec. V B.

V. TWO-TIME CORRELATION FUNCTIONS

In order to make use of the first-passage property of FBM
mentioned in Sec. IV, we need to calculate the incremental
correlation functions,

C1st1,t2,t0d = Ef„h1sr ,t0 + t1d − h1sr ,t0 + t2d…2g, s31d

C2st1,t2,t0d = Ef„h2sr ,t0 + t1d − h2sr ,t0 + t2d…2g, s32d

whereEf¯g denotes an average over both thermal noises as
well as the disorder. Note that while for the first interfaceh1
the expectationEf¯g is only over the thermal noise, for the
second interface it includes averages over both the thermal
noise as well as the disorder. In Sec. V A, we calculate
C1st1,t2,t0d which is rather straightforward. The computation
of C2st1,t2,t0d is more involved and is detailed in Sec. V B.

A. Incremental correlation function for the first interface

Since Eq.s1d is linear one can solve it by the standard
Fourier transform technique. We define the Fourier transform

h̃1sk ,td=eddrh1sr ,tdexpsik ·r d. Taking the Fourier transform
of Eq. s1d one gets

h̃1sk,td = e−k2tE
0

t

ek2t8h̃1sk,t8ddt8, s33d

where we have assumed that the system starts from a flat
initial condition h1sr ,t=0d=0. Using the noise correlator in
Eq. s3d one can then easily show that

kh̃1sk,t1dh̃1s− k,t2dl =
1

2k2fe−k2ut2−t1u − e−k2st1+t2dge−k2a2
.

s34d

The autocorrelation function in real space can then be ob-
tained as

A1st1,t2d = kh1sr ,t1dh1sr ,t2dl

=E ddk

s2pdd

e−k2a2

2k2 f− s1 − e−k2ut2−t1ud

+ s1 − e−k2st1+t2ddg. s35d

The right-hand side of Eq.s35d is a sum of two integrals each
of which is convergent and can be easily done in closed form
and one getsf20g

A1st1,t2d =
a0

s2 − dd
fst1 + t2 + a2d1−d/2 − sut2 − t1u + a2d1−d/2g,

s36d

where a0=s4pd−d/2. Thus, as t→`, A1st ,td=kh1
2sr ,tdl

, t1−d/2= t2b1 for d,2. One the other hand, ford.2,
A1st ,td→a0/ fsd−2dad−2g as t→`. Thus while ford.2 the
surface becomes smooth in the stationary state, ford,2 the
surface roughens with time and the fluctuations grow as a
power law in an infinite system,

kh1
2sr ,tdl , t2b1, whereb1 = s2 − dd/4. s37d

The incremental two-time correlation function defined in
Eq. s31d can then be written as

C1st1,t2,t0d = kfh1sr ,t1 + t0d − h1sr ,t2 + t0dg2l

= A1st1 + t0,t1 + t0d + A1st2 + t0,t2 + t0d

− 2A1st1 + t0,t2 + t0d. s38d

Using Eq.s36d and taking the limitt0→` one finds that for
d,2

C1st1,t2,t0 → `d =
a0

s2 − dd
f2sut2 − t1u + a2d1−d/2 − 2a2−dg

, ut2 − t1u1−d/2 for ut2 − t1u @ a2. s39d

Comparing with the defining property of the FBM in Eq.
s30d we see that ford,2 and in the limitt0→`, i.e., when
one observes the stochastic processh1sr ,td at a fixed pointr
in space as a function of time after a waiting timet0→`, the
process is a FBM with a Hurst exponentH1=s2−dd /4. This

then proves that the persistenceP1st ,t0→`d, t−us
1

as t→`
where

us
1 = 1 −H1 = s2 + dd/4. s40d

In the limit d→0, Eq. s40d gives us
1=1/2 sthe classical

Brownian motion resultd and for d=1, one getsus
1=3/4, a

result that was predicted in Ref.f20g and was subsequently
verified experimentallyf28g.

We now turn to the persistence probabilityP1st ,t0→`d
for d.2. For d.2, the physics of the process is rather dif-
ferent. The fluctutations of heighth1 no longer grow at late
times, but rather saturate to a constant,kh1

2sr ,tdl=A1st ,td
→a0/ fsd−2dad−2g as t→`. Thus, for d.2, the cutoff
a.0 is essential. Besides, the relevant processh1sr ,td, at a
fixed r but as a function of time, no longer satisfies the
properties of a FBM. Thus one can no longer use the first-
passage property of FBM to compute the persistence
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P1st ,t0→`d. To make progress, we note that ford.2, it
follows from Eq.s36d that in the limit when botht1 andt2 are
large but their differenceut2− t1u= t kept fixed, the autocorre-
lation function becomes stationary, i.e., only a function of
t= ut2− t1u, and decays as a power law

A1st1,t2d <
a0

sd − 2d
1

sut2 − t1u + a2dd/2−1. s41d

Thus, in this limit,h1 is a Gaussian stationary process with
an autocorrelatorA1sut2− t1u= td, t−sd/2−1d. Interestingly, ex-
actly the same Gaussian stationary process also represents
the total magnetization of a manifold in nonequilibrium criti-
cal dynamics within the mean field theoryf41g. In general,
the calculation of persistence of a Gaussian stationary pro-
cess with an algebraically decaying correlator is nontrivial.
However, it was pointed out in Ref.f41g that one can use a
powerful theorem due to Newell and Rosenblattf42g to ob-
tain useful bounds on the persistence property of such a
Gaussian process. The Newell-Rosenblatt theorem states that
if the stationary autocorrelator of a Gaussian process decays
algebraically asAstd, t−a for large time differenceut2− t1u
= t, then the persistencePstd si.e., the probability of no zero
crossing over a time intervaltd has the following asymptotic
behaviors:

Pstd , expf− K1tg for a . 1,

expf− K2t
a ln tg ø Pstd ø expf− K3t

ag for 0 , a , 1,

s42d

whereK1, K2, andK3 are some constants. In the borderline
casea=1, one has additional logarithmic correction. Apply-
ing this theorem to our interface problem upon identifying
a=d/2−1.0, we conclude that for larget

P1st,t0 → `d , expf− K1tg for d . 4,

expf− K2t
d/2−1 ln tg ø P1st,t0 → `d ø expf− K3t

d/2−1g

for 2 , d , 4. s43d

Thus the persistence decays exponentially at late times for
d.4 and stretched exponentially for 2,d,4. This is to be

contrasted with the power law decayP1st ,t0→`d, t−us
1

for
d,2.

B. Incremental correlation function for the second interface

In this subsection we show that in the limitt0→` and for
d,2, evenh2 is a FBM process and one can calculate ex-
actly the corresponding Hurst exponentH2 and hence the
persistence exponentus

2=1−H2. Taking the Fourier trans-
form of Eq. s2d one gets

h̃2sk,td = e−k2tE
0

t

dt8ek2t8Fh̃2sk,t8d

+E eik·r8v„h1sr 8,t8d…ddr 8G . s44d

Alternatively in real space, one can write

h2sr ,td =E
0

t

dt8E ddr 8
e−sr − r8d2/4st−t8d

f4pst − t8dgd/2 fh2sr 8,t8d

+ v„h1sr 8,t8d…g. s45d

Then the autocorelation function, averaged over both the
thermal noise and the disorder, is given by

A2st1,t2d = Efh2sr ,t1dh2sr ,t2dg = kh2sr ,t1dh2sr ,t2dl

= I1st1,t2d + I2st1,t2d, s46d

whereI1st1,t2d counts the contribution due to the noise-noise
correlatorkh2h2l and has the same expression as the auto-
correlation function of the first interface,

I1st1,t2d = A1st1,t2d =
a0

s2 − dd
fst1 + t2 + a2d1−d/2

− sut2 − t1u + a2d1−d/2g. s47d

On the other handI2st1,t2d counts the contribution due to the
random velocity term and is given by

I2st1,t2d =E
0

t1

dt1E
0

t2

dt2E ddr 18
e−sr − r 18d2/4st1−t1d

f4pst1 − t1dgd/2

3E ddr 28
e−sr − r 28d2/4st2−t2d

f4pst2 − t2dgd/2kv ·vl, s48d

where

kv ·vl = kvfh1sr 18,t1dgvfh1sr 28,t2dgl

= kd„h1sr 18,t1d − h1sr 28,t2d…l

=E
−`

` dq

2p
keiqfh1sr 18,t1d−h1sr 28,t2dgl. s49d

In Eq. s49d we have first performed the disorder average
which gives the expression on the second line. Next we used
an integral representation of the delta function in the third
line. The thermal average over the delta function can be done
by noting that for a Gaussian processh, kdshdl
=e−`

` fdq/ s2pdgkeiqhl=e−`
` fdq/ s2pdge−q2kh2l/2=1/Î2pkh2l; in

our case h1 being a Gaussian process,fh1sr 18 ,t1d
−h1sr 28 ,t2dg is also Gaussian. This gives

kv ·vl =
1

Î2pkfh1sr 18,t1d − h1sr 28,t2dg2l
. s50d

Using Eq.s34d one can easily compute the following two-
time correlation function:

kh1sr 18,t1dh1sr 28,t2dl =E ddk

s2pddkh̃1sk,t1dh̃1s− k,t2dleik·sr 18−r 28d

=
1

2
E

ut1−t2u+a2

t1+t2+a2

dt
e−sr 18 − r 28d2/4t

s4ptdd/2 . s51d

For d,2, one can safely set the cutoffa→0 for simplicity
and using Eq.s51d one gets
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kfh1sr 18,t1d − h1sr 28,t2dg2l =
a0

s2 − ddFs2t1d1−d/2 + s2t2d1−d/2

− s2 − ddE
ut1−t2u

t1+t2

dtt−d/2

3e−sr 18 − r 28d2/4tG . s52d

Equationss52d and s50d thus fully specify I2st1,t2d in Eq.
s48d which can be further simplified by making the change of
variables:r 18−r =u and r 28−r 18=z. The integral overu is a
Gaussian that can be easily performed. After a few steps of
elementary algebra we get

I2st1,t2d = Î2s2 − dds4pdsd−2d/4E ddz
e−z2/4st1+t2−t1−t2d

f4pst1 + t2 − t1 − t2dgd/2

3 E
0

t1

dt1E
0

t2

dt2Fs2t1d1−d/2 + s2t2d1−d/2 − s2 − dd

3E
ut1−t2u

t1+t2

dtt−d/2e−z2/4tG−1/2

. s53d

Note that whent1= t2= t a simple power counting in Eq.s53d
shows thatI2st ,td, tsd+6d/4 for large t. On the other hand, it
follows from Eq. s47d that I1st ,td, ts2−dd/2 for large t. Thus
I2st ,td grows faster thanI1st ,td for large t. Thus it follows
from Eq. s46d that

Efh2
2sr ,tdg = A2st,td , t2b2, whereb2 = s6 + dd/8.

s54d

In particular ford=1, the resultb2=7/8 agrees with that of
Ref. f19g derived in the context of a Rouse chain in a random
tranverse velocity field.

The incremental correlation function defined in Eq.s32d
can then be written in terms of the autocorrelation function,

C2st1,t2,t0d = Ekfsh2sr ,t1 + t0d − h2sr ,t2 + t0dd2g

= A2st1 + t0,t1 + t0d + A2st2 + t0,t2 + t0d

− 2A2st1 + t0,t2 + t0d

= C1st1,t2,t0d + C2
I2, s55d

where in going from the second to the third line in Eq.s55d
we have used Eq.s46d, the fact that C1st1,t2,t0d= I1st1
+ t0,t1+ t0d+ I1st2+ t0,t2+ t0d−2I1st1+ t0,t2+ t0d and the contri-
bution C2

I2 coming from theI2 terms is defined as

C2
I2 = I2st1 + t0,t1 + t0d + I2st2 + t0,t2 + t0d − 2I2st1 + t0,t2 + t0d.

s56d

A close inspection of Eq.s53d reveals that for larget1 and
t2 the dominant contribution to the integral comes from the
region wherest1+ t2−t1−t2d→0. To capture the leading be-
havior of I2st1,t2d for large t1 and t2 it is then sufficient to

make the replacement e−z2/4st1+t2−t1−t2d / f4pst1+ t2−t1

−t2dgd/2→dszd in Eq. s53d. Thus to leading order for larget1
and t2 one gets

I2st1,t2d < Î2s2 − dds4pdsd−2d/4E
0

t1

dt1E
0

t2

dt2fs2t1d1−d/2

+ s2t2d1−d/2 − 2st1 + t2d1−d/2 + 2ut1 − t2u1−d/2g−1/2.

s57d

For larget0, all the arguments ofI2 on the right-hand side rhs
of Eq. s56d are large even thought1 andt2 may not be large.
Hence one can use the asymptotic expression ofI2 in Eq.
s57d. Substituting Eq.s57d in Eq. s56d and rearranging the
domains of integration one finds for larget0

C2
I2 < Î2s2 − dds4pdsd−2d/4E

t1+t0

t2+t0

dt1E
t1+t0

t2+t0

dt2fs2t1d1−d/2

+ s2t2d1−d/2 − 2st1 + t2d1−d/2 + 2ut1 − t2u1−d/2g−1/2.

s58d

Making a further change of variablesx1=t1−st1+ t0d andx2

=t2−st2+ t0d one finds that to leading order for larget0 the
rhs of Eq.s58d becomes independent oft0 and depends only
on ut2− t1u,

C2
I2 < Îs2 − dds4pdsd−2d/4E

0

ut2−t1u

dx1E
0

ut2−t1u

dx2ux1 − x2usd−2d/4.

s59d

Performing the double integral in Eq.s59d one finally gets

C2
I2 <

32Îs2 − dd
sd + 2dsd + 6d

s4pdsd−2d/4ut2 − t1us6+dd/4. s60d

Substituting the results from Eqs.s39d ands60d on the rhs of
Eq. s55d one gets for larget0

C2st1,t2,t0 → `d < b1ut2 − t1u1−d/2 + b2ut2 − t1us6+dd/4,

s61d

whereb1 andb2 are two constants that can be read off Eqs.
s39d and s60d, respectively. Since the exponents6+dd /4
. s1−d/2d one gets for largeut2− t1u

C2st1,t2,t0 → `d , ut2 − t1us6+dd/4. s62d

Comparing with Eq.s30d one thus finds that for larget0 and
d,2, the processh2 is also a FBM with

H2 = s6 + dd/8, s63d

us
2 = 1 −H2 = s2 − dd/8 = b1/2. s64d

In the limit d→0, one thus recovers the resultus
2=1/4 for a

single particle MdM modelf12,13g. For d=1, we getus
2

=1/8, theexact persistence exponent for the Rouse chain in
a transverse velocity field.

The above results are valid ford,2. Ford.2, one needs
to keep the cutoffa finite. Carrying out a similar analysis as
in the d,2 case but keepinga finite, one can show that in
the limit t0→`, the incremental correlation function has the
following asymptotic behavior for alld.2:
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C2st1,t2,t0 → `d , ut2 − t1u2 for ut2 − t1u @ a2. s65d

Thus ford.2, h2 is a FBM withH2=1 which indicates that
us

2=0 for all d.2. This means that the persistenceP2st ,t0
→`d tends to a constant at large timet for all d.2. Indeed,
Eq. s65d indicates that the surfaceh2 grows ballistically at
late times and with a finite probabilityh2 does not return to
its starting position att0 over the time intervalft0,t+ t0g. In
combination with the result in Eq.s64d, one thus concludes
that the exponentus

2=s2−dd /8 for d,2 tends to 0 as
d→2− and then sticks tous

2=0 for all d.2. Note that this
behavior ofP2st ,t0→`d for d.2 is quite opposite to the
correspondingd.2 behavior of the first interfaceh1 for
which P1st ,t0→`d decays faster than a power law at larget
as was shown in the previous subsection.

VI. GENERALIZATION TO OTHER GROWING
INTERFACES

In this section, we consider a generalization of our model
of coupled interfaces. In this generalized version, while the
second interface heighth2 still evolves via Eq.s2d, the first
interface heighth1 may correspond to any generically grow-
ing interface, not necessarily evolving via the Edwards-
Wilkinson equations1d. For example,h1 may evolve via the
KPZ equationf30g,

]h1

]t
= ¹2h1 + ls¹h1d2 + h1sr ,td. s66d

In general, we will consider a generically growing interface
h1 characterized by the following dynamical scaling of its
space-time correlation functionf31g,

kfh1sr 18,t1d − h1sr 28,t2dg2l < ut2 − t1u2b1fS ur 18 − r 28u
z1

ut2 − t1u
D ,

s67d

where b1.0 is the growth exponent,z1 is the dynamical
exponent, andfsyd is the dynamical scaling function which
approaches a constant asy→0, fs0d=C and decays for large
y. For example, for thes1+1d-dimensional Edwards-
Wilkinson equation,b1=1/4 and z1=2, whereas for the
s1+1d-dimensional KPZ equation,b1=1/3 andz1=3/2 f31g.
Note that for as1+1d-dimensional KPZ equation, one loses
the symmetryh→−h. Hence the persistence exponentus

1 as-
sociated withh1 will be different depending on whether the
processh1 stays above its mean value or below its mean
value f21,26g. In this paper, we focus only on the second
interfaceh2 for which there is only one persistence exponent
us

2. The goal of this section is to show that quite generically
us

2=b1/2.
We follow a similar route as in Sec. V B and start with the

calculation of the autocorrelation function of theh2. All the
steps from Eqs.s44d and s49d remain unchanged since one
does not use any information abouth1 until Eq. s49d. One
uses the specific information abouth1 in evaluating the av-
eragekv ·vl in Eq. s50d. In Sec. V B, the processh1 is Gauss-
ian at all times since it evolves via the linear Edwards-

Wilkinson equations1d. This fact thath1 is Gaussian was
used explicitly in evaluating the thermal average
kexphiqfh1sr 18 ,t1d−h1sr 28 ,t2dgjl in Eq. s49d which led to the
result in Eq.s50d. For a generic non-Gaussian interfaceh1
one can use this step to evaluate the thermal average in Eq.
s49d. To make progress, let us first denoteh=fh1sr 18 ,t1d
−h1sr 28 ,t2dg. Then Eq.s49d gives

kv ·vl =E
−`

` dq

2p
keiqhl =E

−`

` dq

2p
E dheiqhPshd s68d

wherePshd is the normalized probability distribution of the
variableh. For a generic interface, one expects the normal-
ized distribution to have the scaling form,Pshd
=1/Îkh2lFsh/Îkh2ld. Substituting this scaling form in Eq.
s68d and rescaling, one finds the following scaling:

kv ·vl ,
1

Îkh2l
=

1

Îkfh1sr 18,t1d − h1sr 28,t2dg2l
. s69d

Next we substitute the generic dynamical scaling form in Eq.
s67d for the correlation function in the denominator of Eq.
s69d and use the resulting expression ofkv ·vl on the rhs of
Eq. s48d. The subsequent evaluation of the integralI2st1,t2d
for large t1 and t2 followed by the evaluation of the incre-
mental correlation functionC2st1,t2,t0d can be done by fol-
lowing an identical analysis as in Sec. V B which we do not
repeat here. After performing these steps one finds that for
large t0→`

C2st1,t2,t0 → `d , b1ut2 − t2u1−d/2 + c1ut2 − t1u2−b1, s70d

whereb1 andc1 are unimportant constants. Thush2 satisfies
the defining property in Eq.s30d of a FBM with a Hurst
exponent given by

H2 = maxfs2 − dd/4,1 −b1/2g. s71d

In particular, forb1,1+d/2 swhich seems to be the case for
most interfacesd, one getsH2=1−b1/2. This then leads to
the persistence exponent

us
2 = 1 −H2 = b1/2. s72d

For example, for as1+1d-dimensional KPZ interfaceh1 for
which b1=1/3, onegets

H2 = 1 −b1/2 = 5/6; us
2 = 1/6. s73d

VII. NUMERICAL SIMULATIONS

In this section we numerically verify some of the analyti-
cal predictions made in the previous sections for the coupled
interface model, in particular the fact that in thet0→` limit
h2 is generically a FBM with Hurst exponentH2=1−b1/2,
i.e., for largeut2− t1u,

C2st1,t2,t0 → `d = lim
t0→`

Ef„h2sr ,t0 + t1d − h2sr ,t0 + t2d…2g

, ut2 − t1u2−b1, s74d

whereb1 is the growth exponent of the first surfaceh1. We
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have checked this prediction numerically ind=1 for two
cases:sid when the first surface evolves via the Edwards-
Wilkinson equation so thatb1=1/4 and Eq.s74d predicts
C2st1,t2,t0→`d,ut2− t1u7/4 for largeut2− t1u. This case corre-
sponds also to the Rouse chain advected by a transverse ve-
locity field as mentioned in Sec. III B andsii d when the first
surface evolves via the KPZ equation so thatb1=1/3. In this
case, Eq.s74d predictsC2st1,t2,t0→`d,ut2− t1u5/3. The re-
sults for the simulations in the two cases are shown in Figs.
2 and 3, respectively.

Our simulation techniques are straightforward. For case
sid above we use the time discretized version of the Rouse
chain model, i.e., Eqs.s20d and s21d. We settm=mDt and
rewrite Eqs.s20d and s21d as

xnstm+1d = xnstmd + Dtfxn+1stmd + xn−1stmd − 2xnstmdg

+ ÎDth1sn,tmd, s75d

ynstm+1d = ynstmd + Dtfyn+1stmd + yn−1stmd − 2ynstmdg

+ Dtv„xnstmd… + ÎDth2sn,tmd. s76d

For the boundary pointsn=1 andn=N, we use free bound-
ary conditions, i.e., we holdx0=x1, y0=y1, xN=xN+1, and
yN=yN+1 for all times tm. We chooseDt,0.5 in our simula-
tions so that the stability is guaranteedf20g. The variables
h1sn,tmd and h2sn,md are independent Gaussian variables
for all n and tm and each is distributed with zero mean and
unit variance. We have checked that even if the noise vari-
ables have a binary distributionsi.e., +1 and −1 each with
probability 1/2d, the results at long times do not change.
Besides, as it turns out from Eq.s70d that the thermal noise
h2 is actually irrelevant for the long time properties of theh2
process, we have droppedh2 in Eq. s76d in most of our
simulations.

We choose the random quenched transverse velocityvsxd
in the following way. First we consider a grid along thex
direction with grid spacingDx. In fact this grid represents the
layered structure of the velocity field. At each point of this
grid we choose independentlyvsxd=usxd /ÎDx whereusxd is
a Guassian random variable with zero mean and unit vari-
ance. Once a set ofhvsxdj is thus chosen, they remain fixed at
all times during different thermal histories. This sethvsxdj
constitutes a particular realization of disorder. Finally one
performs the disorder averages¯d by averaging over vari-
ous realizations of the sethvsxdj. Now, xn in Eq. s75d at any
given time is usually a continuous variable and may not cor-
respond to a grid point. In fact, in general,xn will be between
two grid points, sayx0 andx0+Dx. In such a case, we use, as
a convention,vsx0d while simulating the rhs of Eq.s76d. For
a fixed realization of the disorderhvsxdj, we average over
30–40 thermal historiessgenerated viah1d and then a final
average is done over 30–40 disorder realizations.

Using this discretization scheme we have computed the
incremental correlation functionC2st1,t2,t0d as defined in
Eq. s74d beyond some large waiting timet0 stypically t0
,30 000 stepsd for different choices of time stepDt and the
grid sizeDx. We have checked that the results do not vary
much with the time step or the grid size. We find that, as
predicted analytically,C2st1,t2,t0→`d depends only on the
time differenceut2− t1u and for largeut2− t1u, C2 scales as a
power law with an exponent<1.75 which is consistent with
the theoretical prediction 7/4. A plot ofC2 as a function of
ut2− t1u is shown in Fig. 2. This confirms numerically the
theoretical prediction that indeedh2 is a FBM with the Hurst
exponentH2=7/8 andhence also confirms that the persis-
tence exponentus

2=1/8.
We also numerically computed the incremental correla-

tion function C2st1,t2,t0→`d for case sii d, i.e., when h1

evolves by thes1+1d-dimensional KPZ equation. For the
s1+1d-dimensional KPZ equation in Eq.s66d, one needs to
be careful about the discretization of space and time as has
been discussed extensively in the literaturef43–47g. In this

FIG. 2. Log-log plot of the incremental correlation function
C2sut2− t1u= td vs t for the Rouse model. The chain length isN
=1024, while Dt=0.1 andDx=0.5; number of disorder histories
=30 and thermal histories=30. The numerical datasshown by1
signsd is compared to the theoretical prediction of a power law with
power 7/4 as shown by the straight line.

FIG. 3. Log-log plot of the incremental correlation function
C2sut2− t1u= td vs t whenh1 evolves via thes1+1d-dimensional KPZ
equation. The chain length isN=4096, whileDt=0.1 andDx=0.5.
The theoretical prediction is the straight line that corresponds to a
power law int with a power 5/3.1.67, while a straight line fit to
the numerical datasshown by1 signsd gives an exponent<1.695.
This slight discrepancy is commented upon in the text.
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paper we used the discretization scheme proposed by New-
man and Swiftf45g with periodic boundary condition,

h1sxn,tm+1d = maxfh1sxn+1,tmd,h1sxn−1,tmd,h1sxn,tmdg

+ ÎDth1sxn,tmd. s77d

We show in Fig. 3 the incremental correlation function
C2sut2− t1u= t ,t0→`d vs t. Evidently C2std increases as a
power law with an exponent<1.695 which is close to the
theoretical prediction 5/3.1.67. The slight discrepancy is
due to the system size used by us, for which even the scaling
exponentb1 for h1 actually is not exactly 1/3 but close to
<0.305. We have checked that the exponent systematically
approaches the expected value with increasingN, and here
our quoted value is based on the largestN that we could
simulate.

VIII. CONCLUSION

In this paper we have studied the time-dependent proper-
ties in a simple model of coupled interfaces characretized by
heights h1 and h2, respectively, growing over a
d-dimensional substrate. The evolution of the first interface
h1 is not affected byh2. In fact,h1 can be any generic grow-
ing interface characterized by a growth exponentb1. For
example, h1 may be evolving either via the Edwards-
Wilkinson equation or via the Kardar-Parisi-Zhang equation.
The evolution of the second interfaceh2, however, is coupled
to that ofh1 by a transverse quenched random velocity field,
in addition to having the usual Edwards-Wilkinson dynam-
ics. In the limiting cased→0, our model reduces to the
Matheron–de Marsily model where one studies the motion of
a Brownian particle in a two-dimensional plane in the pres-
ence of a transverse velocity field. In the limitd=1, our

model describes the equations of motion of a Rouse polymer
chain in two dimensions in presence of a transverse velocity
field.

We have obtained analytical results for the persistence
properties in this model. The main result of this paper is to
show analytically that after a long waiting timest0→`d, the
processh2, at a fixed point in space but as a function of time,
becomes a fractional Brownian motion with a Hurst expo-
nent H2=1−b1/2. By using a known first-passage property
of fractional Brownian motion we have then shown that after
a long waiting timet0→`, the persistence probabilityP2std
that the processh2 at a fixed point in space does not come
back to its value att0 over the time intervalft0,t0+ tg decays

as a power law for larget, P2std, t−us
2

where the exponent
us

2=1−H2=b1/2. Ford=1, these analytical predictions have
been verified numerically in two cases: whenh1 evolves via
the Edwards-Wilkinson equation and whenh1 evolves via
the Kardar-Parisi-Zhang equation.

The mapping of a relevant stochastic process in some lim-
its to a fractional Brownian motion is a rather powerful tech-
nique for studying the first-passage properties for non-
Gaussian and/or non-Markovian processes. The mapping
does not work always, but if it works one can use the known
first-passage property of the fractional Brownian motion.
This technique has been used successfully in a number of
contexts previouslyf13,20–22,26,27g. We have demonstrated
that the same technique also works in another class of
coupled interface models discussed in this paper. It would be
interesting to find other such cases where one can apply the
same technique successfully. Finally, it would be interesting
to study the persistence properties in more realistic models of
coupled interfaces that are closer to the experimental situa-
tion of fluctuating stepsf28g.
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