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We study the persistence properties in a simple model of two coupled interfaces characterized byhheights
andh,, respectively, each growing overdadimensional substrate. The first interface evolves independently of
the second and can correspond to any generic growing interface, e.g., of the Edwards-Wilkinson or of the
Kardar-Parisi-Zhang variety. The evolution lof, however, is coupled th; via a quenched random velocity
field. In the limitd— 0, our model reduces to the Matheron—de Marsily model in two dimensionsl=Fgrour
model describes a Rouse polymer chain in two dimensions advected by a transverse velocity field. We show
analytically that after a long waiting timgg— «, the stochastic process, at a fixed point in space but as a
function of time, becomes a fractional Brownian motion with a Hurst expom&rt1-8,/2, wherep, is the
growth exponent characterizing the first interface. The associated persistence exponent is showﬁn:l‘b be
—-H,=3,/2. These analytical results are verified by numerical simulations.
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I. INTRODUCTION Another solvable example is the persistence of a single par-

. o i ticle advected by a layered random velocity figl®—14.
The survival probability>(t) that a stochastic procexst) The purpose of this paper is to present analytical results

does not cross zero up to timés a quantity of long standing  for the persistenc®(t) in a system with both spatial inter-
interest in probability theory and with many practical appli- 5¢tion and disorder. Our system consists of two growihg
cations[1]. The derivativeF(t)=-dP/dt is called the first- | 1) jimensional interfaces whetbrefers to the dimension
passage probability2]. This subject has seen a resurgentys yhe substrate on which the surfaces grow and 1 refers to

interest over the last decade in the context of many bodyhe (ime t. The two interfaces are characterized by their
nonequilibrium systems where the stochastic prodéssde-  paightsh,(r ,t) andhy(r ,t), respectively. In our model, while

notes a local time dependent field in a spatially extendegyq heighth, of the first interface evolves independently of
evolving system. For example, in the case of the Ising mod ,, the evolution ofh, is driven by a velocity that is a ran-
evolving under the Glauber dynamics, the relevant stochastigq ., quenched function df,. This random velocity repre-
processX(t) is the spins(t) at a fixed sitd as a function of  gos the disorder in the system. The model is detailed in
time t and P(t) then denotes the probability that the sgin  gec 1.
does not flip up to time [3]. In this context, the survival There are two motivations for studying this model:
probability P(t) thus measures the “persistence” of a local (i) we will show later in Sec. Il that our model corre-
field to remain in its initial state. In many of these nonequi—sponds to different well known physical systems for different
librium systems, the persistence has been found to decay as/glues of the spatial dimensiah For example, in the limit
power law at late timesP(t) ~t™". The exponent is called  d— 0, our model reduces to the Matheron—de Marsily model
the persistence exponent and has been a subject of mugihere one studies the motion of a single Brownian particle
theoretical, numerical, and experimental studies in recernf a two-dimensional plane in the presence of a transverse
times[4]. The exponend® is very hard to calculate analyti- random velocity field15]. On the other hand, fod=1, we
cally even in simple systems such as the linear diffusiorwill show that our model describes the evolution of a Rouse
equation starting from random initial conditioffsl. The rea-  polymer chain16] (a Rouse chain consists of a set of beads
son for this difficulty can be traced back to the fact that theor monomers connected by harmonic springsving in a
spatial interactions in these extended systems makes th@o-dimensional plane and advected by a transverse random
local stochastic fieldX(t) a “non-Markovian” process in velocity field. While the transport properties in this latter
time [4]. model are well understood.7-19, the persistence proper-
Apart from these pure systems, persistence has also be€gs are less understood. The analytical results obtained in
studied in systems with quenched disorf&f7]. In the pres-  this paper for the persistence in our model for genénaill
ence of disorder, the exact calculation of persistdP¢is  apply to these models in the limiting casgs0 andd=1.
nontrivial even for a single particle without any spatial inter-  (ii) The persistence properties of a single interface have
action, though some analytical results have been obtainedeen studied extensively both theoretici®p—27 and more
recently. For example, the asymptotic results for the persisrecently they have been measured experimentally in a system
tence of a particle moving in a random Sinai potential in oneof fluctuating steps on Si-Al surfacgg8]. In the experimen-
dimension have been obtained both in the case of a vanishintgl system, there are many step edges, each corresponding to
external field 8—10] and also for nonzero external fidldi1]. a single interface. If the step edges are sulfficiently separated
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from each other, they can be considered as independentlytion of the second interfach, in Eq. (2), in addition to
growing interfaces. However, in general, there will always behaving the Laplacian and the noise term, is coupled to the
an interaction, albeit weak, between two step edges and thelireighth, of the first interface via the quenched random ve-
motions will be coupled. Hence it is important to study per-locity v(h,(r,t)) which is also considered to be a Gaussian
sistence in models where the interface heights are coupletith the following moments:

Motivated by this observation, we study here the persistence —

in a simple model of coupled interfaces. While this model is, v(hy) =0, (5)
by no means, a true representative of the actual experimental

situation, the advantage is that it represents a minimal model v(hpv(hy) = 8(h; - hy), (6)

w:)h ecr?ilézhggaforicgﬁl ich one can calculate the persistencg, o) denotes averages over the different realizations of
prop ytically. the quenched velocity field(hy).

The paper is organized as follows. In Sec. Il, we define W int ted in the followi ist babili
the model precisely and state our main results. In Sec. IlI W(—% € are interested in the lollowing persistence probabili-
ies at a fixed positiom in space:

consider the two limiting cased— 0 andd=1 where our
model reduces to two well known models. In Sec. IV we P.(t,tg) = Prolfhy(r,t") # hy(r,to)
point out our strategy to compute the persistence exponents

analytically. In Sec. V, we map the relevant stochastic pro- forall t":to <t' <to+1], (7)
cess into a fractional Brownian motidkBM) and then us-

ing a well known first-passage property of FBM, we calcu- Pa(t,t) = Prolfhy(r,t") # hy(r,to)

late the persistence exponents analytically. Section VI for all t':tg < t' < to+t]. @)

considers a generalization to other types of interfaces. Sec-
tion VII contains details of numerical results, and finally we The former represents the probability that the helglt ,t")
conclude with a summary and outlook in Sec. VIII. of the first interface at a fixed pointin space does not return
to its value at, within the time intervalty,ty+t]. The latter
represents the same probability for the second interface. The
[l. MODEL AND MAIN RESULTS persistence probabilityP,(t,ty) for the free Edwards-

We consider two interfaces characterized by their heightéNIIkInson equation in Eq(7) has been studied both analyti-

: o . cally and numerically[20]. It is known that ford<2,
ZE(éé:Lir?gioh?[ge' tf)ol?or\(/)v\i/\rl:gge\?onlu:gndrlent;ﬁgifnnsél substrate P,(t,tp) has a power law decay for largeharacterized by a

nontrivial persistence exponent and the value of this expo-

dhy nent depends on whether the waiting titge 0 (no return to
AL m(r.b, (1) the initial condition or t,— o (no return to a stationary con-
figuration [20],
ﬂh = ~ _Hl
Ez = V2hy +o(hy(r,1) + 7,(r 1), (2 Py(t,tp=0) ~ %, 9)
s
where 7, and 7, represent the thermal Gaussian noises that Pi(t,tg— ) ~t7%, (10)
are uncorrelated Wlth_each other, each has zero mean, aphere the subscripts 0 arwin the exponents refer respec-
their correlators are given by tively to the probabilities of no return to the initial condition

(to=0) and no return to a stationary configuratitg— ).
The superscript 1 refers to the first interface. It turns out that
(3 the exponentd} is hard to determine analytically and is
known only numerically. For exampleé%zl.SSi0.0Z in(1
(oF 1) 7ol s t)) = [Aara?] V2l =48 5t — 1), +1) dimensiong20]. On the other hand, the exponefitwas
@) computed analytically20] by mapping the proceds in the
to— o limit to a FBM and then using a known first-passage
wherea denotes the range of the correlator and serves as @sult of FBM. For alld<2, one getg$20]
short distance cutoff. Fait<2 where the interface roughens o=
with time, the short distance cutoff plays no important role s=(2+d)/4. (11)
and one can safely take the lindit-0 and replace the cor- For d=1 this givesg:=3/4, aresult that was recently veri-
relators in Egs.(3) and (4) by delta functions, ie. fied experimentally in a system of fluctuatingl+1)-
[4ma?] Y2g7Iri=ral42"_, 5(r, —r,). However, ford>2, Eqs.  dimensional steps on Si-Al surfades]. Ford> 2, we show
(1) and (2) exhibit ultraviolet divergences and one needs tothat the persistencB,(t,t,— ) decays faster than a power
keep a finitea in order that(h?) and(h3) remain finite in the  law for larget, stretched exponentially for2d<4 and ex-
t— oo limit. ponentially ford>4.
The first interfaceh; evolves freely according to Eql) In this paper, we study the persistence probab#iit, t;)
which is precisely the celebrated Edwards-Wilkinson equaef the second interface in EQR). As in the case of the first
tion [29] in (d+1) dimensions. On the other hand, the evo-interface, we find that for large interval

_ _ _ 2 2
(m(r1,t) (1 o, t)) = [4mral] V2erlra—rd ™4 5t —t,),
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—0)
Pz(tyto - O) t 0, (12)

P(t.to — ) ~ %%, 13 v

where the superscript 2 in the exponents refer to the secon:
interface. While we were not able to compute the exponent :
65, we calculated the exponesf analytically for alld<2,

¢2=(2-d)/8. (14)

Ford>2, we argue that the persistenest,t,— ) tends to §(X:n,}’1§1)
a constant ag— oo. T oo
Furthermore, we were able to generalize this result to the :
case when the second interface evolves by @y.but the :
first interface is any generic growing surface, evolving not
neccesarily by the Edwards-Wilkinson equation. For ex- :
ample, the first interface may evolve by the Kardar-Parisi-
Zhang (KPZ) equation[30]. In general, this first interface
will be characterized by a growth expong#itand a dynami-
cal exponentz; defined via the scaling form of the second o )
moment of the height differences between two points inof & tracer particle in porous rocks5]. While the transport
space, ([hy(ry,7)—=hy(ry, 712~ |my—7|?1f(r,—r,|a/|r, ~ Properties in this model were well understokﬁ?—34], the
~7)). For example, for the(1+1)-dimensional Edwards- study of persistence properties in thl;_model are rglatlvely
Wilkinson equation one hag,=1/4 andz,=2, whereas for recent[12,13. The'per§|stence probabilities deflned in Egs.
the (1+1)-dimensional KPZ equation one h@=1/3 and (_7) and(8) reduce, in this context, to the following probabili-

z,=3/2[31]. Our main result is to show that ties:
= il2. (15)

In particular, Eq.(15) predicts that in(1+1) dimensions, if
the first interface evolves via the KPZ equati@f=1/6. In
Sec. VII we show that the numerical results are consistent

FIG. 1. A Rouse chain in a random layered velocity field in two
dimensions.

P.(t,tg) = Prox(t’) # x(to) for all t":tg <t’ <ty+t],
(18)

P,(t,to) = Proly(t") # y(tp) for all t":tg <t’ <ty+t].

with this theoretical prediction. (19
The first probabilityP4(t,ty) is simply the probability of no
. LIMITING CASES return to its initial position of a one-dimensional Brownian

motion and hencePl(t,to)~t‘”35 where 65=6:=1/2. The
probability P,(t,t;) associated with thg coordinate is non-
trivial. Based on heuristic arguments and numerical simula-
tions, Redner showed that=1/4 [12]. More recently, it
was proved analytically th :6%:1/4 bymapping the sto-
A. Limit d—0 chastic procesg(t) to a FBM and then using a known first-
In the limit d—0, there is no “space” variable in the Passage property of the latfer3]. The resultg;=1/4 isthus
problem. Thus the Laplacian terms on the right-hand side oft SPecial case of our result in E44) of the interface model
Egs. (1) and (2) drop out and also the noise variables noin the limit d—0. Incidentally, the exponent;=1/4 hap-

longer have any dependence. Interpretifg=x andh,=y  Pens to be generic for a class of transverse velocity fields and
as the coordinatesx,y) of a single particle on a two- Occurs even when the tranverse velocity field is a determin-

dimensional plane, Eqél) and (2) reduce to istic but an odd function oX, i.e., v(x)=-v(-x) [35,36,14.

In this section we show that in the two limiting cases
d— 0 andd=1, our model defined by Egél) and(2) reduce
respectively to two well studied models.

dx B. Cased=1
— =m®, (16) _ _ _
dt Let us consider a Rouse polymer chain embedded in a

two-dimensional plane. The chain consists of beads con-
y nected by harmonic sprindd6]. In addition, the chain is
dt v(X(t) + 72(1). (17 advected by a random layered velocity field as shown in Fig.
1. Let[x,4(t),y,(t)] denote the coordinates of timh bead at
These equations represent precisely the Matheron—de Mar§me t which evolve with time according to the following
ily (MdM) model [15] where a single Brownian particle equations of motion:
moves in a two-dimensional plane in the presence of a trans-
verse quenched random velocity fiel@x). This model was dx, (20)

—=T i1t X — 2X,) + 1),
originally introduced to study the hydrodynamic dispersion dt Oea + Y- = 2) + (0
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dy, ticular, for the probability of no return to a stationary con-
P L(Yne1 + Y17 2Y0) +v(Xa(t) + 722(0,1), (21 figuration[ty— o limit in Egs. (24) and(25)] of the polymer,
we have for large interval,
whereI" denotes the strength of the harmonic interaction

-3/4
between nearest neighbor beagsg.n,t) and 7,(n,t) repre- Py(t,to — o) ~7°7, (29
sent the Gaussian thermal noises along<thady directions, s

respectively, and are delta correlated. The velocity fighd Pa(t,tg — ) ~ 72, (29

is a random quenched function ftaken to be a Gaussian

_ X where the exponents 3/4 and 1/8 are obtained by substitut-
with the following moments:

ing d=1 in Egs.(11) and (14), respectively. Interestingly,

v(x) =0, (220 forI'=0, i.e, in the single particle MdM model, the corres-
ponding probabilities decay a®;(t,t;—»)~t"*2 and
2(oX) = 8(x-x') (23) P,(t,to— ) ~t"Y4 as discussed in the previous subsection.

Thus switching on the harmonic interaction strengitihas
For a finite chain withN beads, Eqs(20) and(21) are valid  opposite effects onP; and P,. While the probability
only for the (N-2) interior beads. The two boundary beads P,(t,t,— ) decays faster as-t%* (compared to~t"/2
will have slightly different equations of motion. However, when I'=0) in presence of interactiol’, the probability
we will only focus here on an infinitely large chaifN P,(t,t;—») decays slower as-t™8 whenT is switched on
—) so that the system is translationally invariant along the(compared to~t"** whenI'=0).
length of the chain and the boundary conditions are irrel-
evant. _ o _ IV. STRATEGY TO COMPUTE THE PERSISTENCE
Note that in the absence of the harmonic interaction term, EXPONENTS
i.e., whenl'=0, this model reduces precisely to a single par-
ticle MdM model discussed in the previous subsection. In  The stochastic proces$g(r,t) in Eq. (1) for a fixedr, as
presence of the harmonic interaction, the transport properties function of timet, is Gaussian albeit non-Markovian. The
in this model have been studied recerjtly—19. However, non-Markovian property arises due to the Laplacian term
the persistence properties fbr# 0 are nontrivial. One can that generates interaction between heights at two different
define the following persistence probabilities: space points. The process(r,t) in Eq. (2) for fixed r is
, .. , similarly non-Markovian and moreover it is non-Gaussian
P1(t,to) = Protixi(t') # x(tp) forall "t <t" <to+1], due to }[/he quenched velocity field in E@). Analytical cal-
(24) culation of the persistence exponent is known to be very hard
for a non-Markovian process even if the process is Gaussian
P,(t,tp) = Proly,(t') # yu(tg) forall t":tp <t’ <ty +t], [4]. For a non-Gaussian process it is even harder in general.
(25) However, in certain cases, it may be possible to map the
relevant stochastic process into a FBM and then one can use
where the former represents the probability thatXheor-  a known first-passage property of FBM to calculate the per-
dinate of a beadsay thenth bead does not return to its sjstence exponent analytically. This strategy has been suc-
position at timet, within the time intervallty,to+t], while  cessful in the past to compute analytically the persistence
the latter represents the same probability foryteordinate  exponents in a number of problems even though the relevant
of the same bead. For an infinite chain, the system is trangrocesses were non-Gaussian and/or non-Markovian
lationally invariant along the length of the chain and hencg13,20-22,26,2] In particular, this strategy was used in Ref.
these persistence probabilities do not depend on the bead(] to calculate the exponerﬂi:(2+d)/4 in Eq. (11) for
label n. the first interface evolving freely with a Edwards-Wilkinson
Since we are interested in the late time properties, one caglynamics. Here we exploit the same strategy to compute the
conveniently replace the harmonic interaction term in Eqsexponent0§:(2—d)/8 in Eq. (14) for the second interface.

(20) and(21) by a continuous Laplacian operator, Before proceeding further, it is then useful at this point to
X Px summarize the definition and the known first-passage prop-
P = P + n,(s1), (26)  erty of a FBM. A stochastic proces§(t) (with zero mean

E[X(t)]=0) is called a FBM if its incremental two-time cor-
relation functionC(ty,t,) =E[(X(t;)—X(t,))?] is (i) station-

2
N_7y +u(x(s,1) + 7(S,0), (27)  ary, i.e., depends only on the time differenege-t,|, and(ii)
it o grows asymptotically as a power law,

where s denotes the distance along the chain and we have Cltyty) ~ [th—t,/2,  [to—ty > 1. (30)

rescaled the time to set the coefficient in front of the Laplac-

ian to be unity. Interpreting=h, andy=h,, Eq. (26) and The parameter &H <1 is called the Hurst exponent that
(27) reduce precisely to thd=1 version of our model de- chracterizes the FBNB7] andE[---] denotes the expectation
fined in Egs(1) and(2). Thus substitutingl=1 in our results  value over all realizations of the procex#). For example,
for the persistence exponents in E(l) and(14), we obtain  an ordinary Brownian motion corresponds to a FBM with
the persistence exponents for the polymer problem. In pad=1/2. Thezero crossing properties of a FBM has been
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studied extensively in the pa$88-40,20. The particular A;(ty,t,) = (hy(r, t)hy(r 1))

property that is useful for our purpose is the fact that the o2

probability that a FBM does not cross zero up to time _ [ g%k e [ (1 - e*itt)

decays as a power law at late timd(t) ~t™¢ with #=1 (2m9 2k?

—H [40,20. Note that this resulo=1-H holds for any zero ()

mean process that satisfies the defining characterigtiasd +(1-e" )] (39

(i) above of a FBM. In particular, it holds even if the processTne right-hand side of Eq35) is a sum of two integrals each

is non-Gaussian and/or non-Markovian as long it satisfies of which is convergent and can be easily done in closed form
and (i) above. A simple proof of this result is given in Ref. anq one get§20]

[20]. Our strategy in the next section would be to first show
that indeed ford< 2, the processeb;(r,t) and hy(r,t) in __Q N1-dI2 _ (|4 _ 2\ 1-d/2
Egs.(1) and(2), for fixedr and in the limitt,— o, do satisfy Aty ) = (2- d)[(t1 tp+a) (Itz = ta] + &)™,
the characteristic6) and(ii) of a FBM with Hurst exponents (36)
H,=(2-d)/4 andH,=(6+d)/8, respectively, and then use

the powerful resulty=1-H stated above to prove tha#  where a;=(4m) ™92 Thus, ast—wo, Ay(t,H)=(hi(r,1))
=(2+d)/4 and#?=(2-d)/8. For the free interfach, in Eq.  ~t'"¥2=t?1 for d<2. One the other hand, fod>2,
(1) this mapping to the FBM was already done in ReD],  As(t,t) —ay/[(d-2)a%?] ast— . Thus while ford>2 the
but we will include it Sec. V A for completeness. The corre- surface becomes smooth in the stationary stateg foR the

sponding calculations fdn, will be detailed in Sec. V B. surface roughens with time and the fluctuations grow as a
power law in an infinite system,
V. TWO-TIME CORRELATION FUNCTIONS (h3(r 1)) ~ 121, whereg, = (2 —d)/4. (37)

In order to make use of the first-passage property of FBM  The incremental two-time correlation function defined in
mentioned in Sec. IV, we need to calculate the incrementagq. (31) can then be written as

correlation functions, ,
, Calty, to,tg) =([ha(r,ty +tg) = hy(r,t; + )]
Cl(tl!thtO) = E[(hl(r atO + tl) - hl(r -tO + t2)) ]a (31) - Al(tl + tOvtl + tO) + Al(tz + toytz + tO)
= 2A4(t; + 15,15 + 1p). 38
Caltastoto) = E[ (1 o+ ) = (1 fo + )7, (32) il +ote* o) (38
) Using Eq.(36) and taking the limity— o one finds that for
whereE[- -] denotes an average over both thermal noises ag o
well as the disorder. Note that while for the first interfage
the expectatior[- - -] is only over the thermal noise, for the Culte to b —s o0) = ) oIt — .| + a2) 192 — pg2-d
second interface it includes averages over both the thermal 1tz to— ) (2 —d)[ (It~ | ) ]
noise as well as the disorder. In Sec. V A, we calculate b g 1-di2 s A2
C4(t;,t,,10) which is rather straightforward. The computation It~ 4 for Jt; ~ty| > a”. (39
of C,(ty,15,1g) is more involved and is detailed in Sec. V B. Comparing with the defining property of the FBM in Eq.
(30) we see that fod<2 and in the limitty— o, i.e., when
one observes the stochastic procegs,t) at a fixed pointr
_ o _ in space as a function of time after a waiting titge- -, the
Since Eq.(1) is linear one can solve it by the standard process is a FBM with a Hurst exponeti=(2-d)/4. This
Fourier transform techn.|que. We .defme the Fgurler transforn?hen proves that the persistenRg(t, ty—s o) ~t~
hy(k,t)=/d hy(r ,t)exp(ik -r). Taking the Fourier transform where
of Eq. (1) one gets

A. Incremental correlation function for the first interface

1
% ast— oo

gi=1-H,=(2+d)/4. (40)

t
ﬂl(k,t)ze‘kth %k, t)dt’, (33 In the limit d—0, Eq. (40) gives 6;=1/2 (the classical
0 Brownian motion resujtand ford=1, one gets¢9§:3/4, a
result that was predicted in R420] and was subsequently
where we have assumed that the system starts from a flgkrified experimentally28].

initial condition hl(l' ,t=0)=0. USing the noise correlator in We now turn to the persistence probabi"ﬂi(t,to_)oo)

Eq. (3) one can then easily show that for d>2. Ford>2, the physics of the process is rather dif-
ferent. The fluctutations of heigl; no longer grow at late
<?11(k,t1)r11(—k,t2)): iz [e—kz\tz—tl\_e—kz(t1+t2>]e—k2a2_ times, but rather saturate to a constaﬂrﬁ(r,t)):Al(t,t)
2k —ag/[(d-2)a%?] as t—ox. Thus, for d>2, the cutoff

(34) a>0is essential. Besides, the relevant prodegs,t), at a
fixed r but as a function of time, no longer satisfies the
The autocorrelation function in real space can then be obproperties of a FBM. Thus one can no longer use the first-
tained as passage property of FBM to compute the persistence
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P,(t,ty—). To make progress, we note that foe2, it g (r = )4t
follows from Eq.(36) that in the limit when both, andt, are hy(r,t) = J dt’ J dor =gl )
large but their differencé,—t;|=t kept fixed, the autocorre- [m(t=t)]
lation function becomes stationary, i.e., only a function of +ou(hy(r',t')]. (45)

t=|t,~t,, and decays as a power law . .
Then the autocorelation function, averaged over both the

1 thermal noise and the disorder, is given b
Aq(ty,tp) = (deloz) (=t + 22771 (41) ¢ y
Ay(t1,tp) = E[hy(r, ty)hy(r,tp) ] = (hy(r, t)hy(r, 1))
Thus, in this limit,h; is a Gaussian stationary process with = 14(tuty) + Ltyty) (46)
an autocorrelatol, ([t,—t;|=t) ~ 727D Interestingly, ex- IR A

actly the same Gaussian stationary process also represemfaerel,(t;,t,) counts the contribution due to the noise-noise
the total magnetlzatlon ofa manlfold in nonequmbrlum criti- Corre]at0r<772772> and has the Same expressmn as the auto-

the calculation of persistence of a Gau33|an stanonary pro-

cess with an algebraically decaying correlator is nontrivial.

— 1-d/2
However, it was pointed out in Ref41] that one can use a li(ty,t) = Ag(ty,tp) = (2- d)[(tl+t2 a%)

powerful theorem due to Newell and Rosenbl42] to ob- 1o

tain useful bounds on the persistence property of such a - (o -ty + @) ). (47)

Gaussian process. The Newell-Rosenblatt theorem states t
if the stationary autocorrelator of a Gaussian process dec
algebraically asA(t) ~t™* for large time differencdt,—t|

alBh the other hanth(t;,t,) counts the contribution due to the
¥andom velocity term and is given by

=t, then the persistende(t) (i.e., the probability of no zero o (r = r)ZA(ty=ry)
crossing over a time interva) has the following asymptotic I5(ty,tp) = j dTlf drzf d? rl el
behaviors: [47(ty = 7)]
P(t) ~ exd- Kyt] for a>1, f R —
dr (v " v), 48
Tamy- 2 Y
exgd-Kot*Int] < P(t) s exd—Kst*] forO<a<1, where
(42)
whereK,, K,, andK; are some constants. In the borderline (w-v) = @lhy(ry, ) Jolh(rz ) D
casea=1, one has additional logarithmic correction. Apply- = (S8(hy(r1,7) = hy(rj,m)))
ing this theorem to our interface problem upon identifying = g
a=d/2-1>0, we conclude that for large =f _q<eiq[h1(ri,fl)—m(ré,fz)]). (49)
o 27T

Pl(t,to s OO) ~ eX[{— Klt] for d> 4,
In Eq. (49) we have first performed the disorder average
exf - Kyt¥? L n t] < Py(t,tg — ) < exd — Kgt¥?™1] which gives the expression on the second line. Next we used
an integral representation of the delta function in the third
forz<d<4. (43) line. The thermal average over the delta function can be done
Thus the persistence decays exponentially at late times fd¥y noting that for a Gaussian procesk, (d(h))
d>4 and stretched exponentially ford<4. This is to be =~ [dg/(2m) (%)= = [dq/ (2m) ]e T ")2= =1/\2m(h?); in

contrasted with the power law decﬁy(t,toﬂoc)~t‘”§ for ~our case h; being a Gaussian procesdhy(ry, )

d<2. —hy(rj, )] is also Gaussian. This gives
B. Incremental correlation function for the second interface ﬁ 1 (50)
vV'V)= .
In this subsection we show that in the linit— o and for \r’/27-r<[h1(r1,7-1) —hy(r}, )%

d<2, evenh, is a FBM process and one can calculate ex-
actly the corresponding Hurst expondi; and hence the
persistence exponen‘ﬁ:l—Hz. Taking the Fourier trans-
form of Eq. (2) one gets

Using Eq.(34) one can easily compute the following two-
time correlation function:

dk ~ ~ o
(h(r g, 7)hy(r 3, 7)) :f W(hl(k,tl)hl(— k,tp))ek 12
hyk, ) =™ f dt e {Uz(k,t')

1 rtrptal —(Tl ry) 2iar
=C a5 51
r g ZJT gt (A7) ¥? (51)
+ | €T o(hy(r', t')d% 7 |. (44) 1772
For d<2, one can safely set the cutaff—0 for simplicity
Alternatively in real space, one can write and using Eq(51) one gets
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([hy(ri,m) —hy(ry, )1 = % |: (27t 42 + (271792

T1t7)
drr 92

7=

e (- ré)2/4ri|

—(2-d)

(52

Equations(52) and (50) thus fully specifyl,(t;,t,) in Eq.

PHYSICAL REVIEW E 71, 036129(2005

R t t
[5(ty,t) =~ V2(2 - d)(477)(d_2)/4f dTlJ dryf (27,792
0 0

+ (27_2)1—d/2 _ 2(7_1 + 7_2)1—d/2 + 2|7_1 _ 7_2|1—d/2]—l/2_
(57)
For larget,, all the arguments df, on the right-hand side rhs
of Eq. (56) are large even though andt, may not be large.

Hence one can use the asymptotic expressioi, of Eq.
(57). Substituting Eq(57) in Eg. (56) and rearranging the

(48) which can be further simplified by making the change ofdomains of integration one finds for large

variables:r;—r=u andr;—r;=z. The integral ovewu is a

to+t to+t
Gaussian that can be easily performed. After a few steps of C'22 ~2(2 _d_)(477)(d_2)/4j 2 odTlf 2 0017_2[(271)1_(1/2
t t

elementary algebra we get
e 214ty =)

[47r(ty + 1ty — 1y — ) |92

5(ty,tp) = v"ﬂ(%)(d‘z)"‘ f dz

ty ty
X J dTlf del(ZTl)lﬂlz + (27_2)1-(1/2 - (2 _d)
0 0

T1t7)
X j
|

1™ 7'2|

, ]2
drrd2e 2747 . (53
Note that whert;=t,=t a simple power counting in E¢53)
shows thatl,(t,t) ~t(@®/4 for larget. On the other hand, it
follows from Eq.(47) that I(t,t) ~t? 972 for larget. Thus
[5(t,t) grows faster thany(t,t) for larget. Thus it follows
from Eq. (46) that

E[h3(r,H)] = Ay(t,t) ~ %P2, wherep, = (6 +d)/8.
(54)

In particular ford=1, the resuliB,=7/8 agrees with that of

Ref.[19] derived in the context of a Rouse chain in a random

tranverse velocity field.
The incremental correlation function defined in Eg§2)

can then be written in terms of the autocorrelation function,

Colty,th,tg) = E [(ha(r,ty +to) = hy(r,tp + 19))?]
= Ag(ty +to,ty + 1) + Ag(ty + Lo, 1o + 1)
= 2A(t; +1g,tr +1p)
= Cy(ty, ta to) + CZ, (59

where in going from the second to the third line in E§5)

we have used EQq(46), the fact thatCi(t;,t,,t0)=14(t;

+1g,ty o) +lq(th+tg, to+tg) — 214 (t; +1g, 1o +1tp) and the contri-

bution C}? coming from thel, terms is defined as

C2= oty +to,ty +1o) + 15ty +to,tp + tg) = 21ty + t,tp + tg).
(56)

A close inspection of Eq53) reveals that for largg and

1*1o 1*1o
+ (2T2)1—d/2 _ 2(7_1 + 7_2)l—d/2 + 2|7_1 _ 7_2|1—d/2:|—l/2'
(58
Making a further change of variableg=7,—(t;+ty) andx,
=7,—(t,+ty) one finds that to leading order for larggthe
rhs of Eq.(58) becomes independent fand depends only
on |t2_t1|,

| - lto=t] [to=ty]
C = (2~ d)(4m)*2" f dx, f dxglxq = x| 2",
0 0

(59

Performing the double integral in E€G9) one finally gets

—_—

L, 32V(2-d)
27 (d+2)(d+6)

Substituting the results from Eg&9) and(60) on the rhs of
Eq. (55) one gets for largé,

(477)(d_2)/4|t2 _ t1|(6+d)/4. (60)

Cylty, b, tg — %) = by |ty — 1,792 + by|t, — t,| ¢+,
(61)
whereb; andb, are two constants that can be read off Egs.

(39 and (60), respectively. Since the expone(f+d)/4
>(1-d/2) one gets for largét,—t|
Calty, ty,tg — ) ~ [tp — t| "D, (62

Comparing with Eq(30) one thus finds that for largg and
d<2, the process$, is also a FBM with

H,=(6+d)/8, (63)

=1-H,=(2-d)/8=p,/2. (64)

In the limit d— 0, one thus recovers the reséft=1/4 for a
single particle MdM mode[12,13. For d=1, we get ¢

=1/8, theexact persistence exponent for the Rouse chain in

t, the dominant contribution to the integral comes from theg {yansverse velocity field.

region wherg(t; +t,— 7, —7,) — 0. To capture the leading be-
havior of I,(t;,t,) for larget; andt, it is then sufficient to
make the replacement e /4 o [[Agr(ty +t,—
-7,)]%2— &(z) in Eq. (53). Thus to leading order for largg
andt, one gets

The above results are valid fd< 2. Ford> 2, one needs
to keep the cutoff finite. Carrying out a similar analysis as
in the d<2 case but keeping finite, one can show that in
the limit ty— oe, the incremental correlation function has the
following asymptotic behavior for alil > 2:
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Cylty,ty,tg— ) ~ |t,— 1|2 for |t,—t;|>a% (65  Wilkinson equation(1). This fact thath, is Gaussian was
) ) S used explicity in evaluating the thermal average
Thus ford>2, h,y is a FBM withH,=1 which |rjd|cates that (explialh(r}, m) —hy(r}, m)T}) in Eq. (49) which led to the
6;=0 for all d>2. This means tha}t the persisterg(t,ty  ogyit jn Eq.(50). For a generic non-Gaussian interfdte
— ) tends to a constant at large tihéor all d>2. Indeed,  one can use this step to evaluate the thermal average in Eq.

Eq. (65) indicates that the surfade, grows ballistically at (49). To make progress, let us first dendte[hy(r}, ;)
late times and with a finite probability, does not return to ~hy(r}, 7)]. Then Eq.(49) gives

its starting position aty over the time intervalty,t+1tg]. In

combination with the result in Ed64), one thus concludes — da, ign _ “ dq iah

that the exponent¥?=(2-d)/8 for d<2 tends to O as (v-v)= Z<e )= o dhe®P(h)  (68)

d— 2" and then sticks t&=0 for all d>2. Note that this - -

behavior of P,(t,t;— ) for d>2 is quite opposite to the whereP(h) is the normalized probability distribution of the

correspondingd>2 behavior of the first interfacdé, for  variableh. For a generic interface, one expects the normal-

which P4(t,tg— ) decays faster than a power law at latge ized distribution to have the scaling formpP(h)

as was shown in the previous subsection. :1/\/@F(h/ \/M). Substituting this scaling form in Eq.
(68) and rescaling, one finds the following scaling:

o0

VI. GENERALIZATION TO OTHER GROWING m 1 1
U .
INTERFACES 0B (s, m) -~ )P

In this section, we consider a generalization of our modeNext we substitute the generic dynamical scaling form in Eq.
of coupled interfaces. In this generalized version, while thgg7) for the correlation function in the denominator of Eq.
second interface heigli; still evolves via Eq.(2), the first (g9 and use the resulting expression{ofv) on the rhs of
interface height, may correspond to any generically grow- g4 (4g). The subsequent evaluation of the intedgdt; , t,)

Ny _mterface, not necessarily evolving via the E_dwards-for larget; andt, followed by the evaluation of the incre-
Wilkinson equatior(1). For exampleh, may evolve via the  entaf correlation functiof©,(t, ,t,,t;) can be done by fol-

KPZ equatior{30], lowing an identical analysis as in Sec. V B which we do not

dhy 5 repeat here. After performing these steps one finds that for
AL AMVhy) =+ my(r,1). (66)  largety— o

(69)

. . . N - _t |1-dr2 _+ |28
In general, we will consider a generically growing interface Calty,to to — 22) ~ byftz ~ 1| et = t[*7, (70)
h, characterized by the following dynamical scaling of its whereb, andc, are unimportant constants. This satisfies

space-time correlation functidi31], the defining property in Eq(30) of a FBM with a Hurst
'z exponent given by
([hy(r,m) = hy(r b, ) %) = |7 — 7y |Prf M
A 2 =7 ) H, = max{ (2 - d)/4,1 - B,/2]. (71)
(67) In particular, forB; <1+d/2 (which seems to be the case for

most interfacels one getsH,=1-3,/2. This then leads to

where 8,>0 is the growth exponentz; is the dynamical the persistence exponent

exponent, and(y) is the dynamical scaling function which
approaches a constantys- 0, f(0)=C and decays for large 0§ =1-H,=pB,/2. (72
y. For example, for the(l1+1)-dimensional Edwards- ) ) )
Wilkinson equation, 8,=1/4 andz=2, whereas for the For example, for ¢1+1)-dimensional KPZ interfach, for
(1+1)-dimensional KPZ equatiorg,=1/3 andz;=3/2[31].  Which 8,=1/3, onegets
Note that for a(1+ 1)-dimensional KRZ equation, one loses H,=1-/,/2=5/6: 0§ =1/6. (73)
the symmetryh— —h. Hence the persistence exponébias—
sociated withh, will be different depending on whether the
processh; stays above its mean value or below its mean VII. NUMERICAL SIMULATIONS
value [21,26]. In this paper, we focus only on the second ) ) . ) .
interfaceh, for which there is only one persistence exponent N this section we numerically verify some of the analyti-
92231/2_ interface model, in particular the fact that in tle— o limit

We follow a similar route as in Sec. V B and start with the hz is generically a FBM with Hurst exponeft;=1-4,/2,
calculation of the autocorrelation function of the All the ~ i-€-, for largelt,—ty],
steps from Eqgs(44) and (49) remain unchanged since one = ¢ t ., o) = lim E[(ho(r ta+t:) = ho(r ta+ to))2
does not use any information about until Eq. (49). One 2t tarlo — ) tye [(ha(r,to+ t) = ha(r.fo + 12))°]
uses the specific information about in evaluating the av- T (74)
erage(v -v) in Eq. (50). In Sec. V B, the proceds, is Gauss- ClRE
ian at all times since it evolves via the linear Edwards-where 3; is the growth exponent of the first surfane We
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10000 Xn(tmer) = Xn(tm) + AtXne1(tm) + Xn-1(tm) = 2X0(t)]
+ V“’Atnl(natm)a (75)
100L
® Ya(tmed) = Yolt) + AYnea(t) + Yo a(tr) = 2n(t)]
= + Aty (X (t) + VAt7,(0, ). (76)
1
] For the boundary points=1 andn=N, we use free bound-
A ary conditions, i.e., we holtky=X;, Yo=VY1, Xy=Xn+1, and
ooty 1 Yn=Yn+1 for all timest,, We chooseAt< 0.5 in our simula-
tions so that the stability is guarantegzD]. The variables
m(n,ty) and 7,(n,m) are independent Gaussian variables
0.0001y5 1 10 T 00070000 for all n andt,, and each is distributed with zero mean and

t unit variance. We have checked that even if the noise vari-

FIG. 2. Log-log plot of the incremental correlation function @bles have a binary distributiofie., +1 and -1 each with
Cyllta—ty|=t) vs t for the Rouse model. The chain length Ns  Probability 1/2, the results at long times do not change.
=1024, whileAt=0.1 andAx=0.5; number of disorder histories Besides, as it turns out from E(Z0) that the thermal noise
=30 and thermal histories=30. The numerical daaown by + 72 is actually irrelevant for the Iong time properties of ﬁlﬁ:‘,‘
signg is compared to the theoretical prediction of a power law with process, we have droppeghb in Eq. (76) in most of our
power 7/4 as shown by the straight line. simulations.

We choose the random quenched transverse veloGdy
in the following way. First we consider a grid along tke
direction with grid spacing\x. In fact this grid represents the
layered structure of the velocity field. At each point of this
grid we choose independentiyx)=u(x)/vAx whereu(x) is
\f.Guassian random variable with zero mean and unit vari-
locity field as mentioned in Sec. Il B an@) when the first ance. Once a set ¢6(x)} is thus chosen, they remain fixed at

surface evolves via the KPZ equation so thgt 1/3. Inthis all times during different thermal histories. This detx)}
case, Eq(74) predicts Cylty , ty, ty— ) ~ [t~ ;>3 The re- constitutes a particular realization of disorder. Finally one

sults for the simulations in the two cases are shown in Figsperforms_; th_e disorder average) by averaging over vari-

2 and 3, respectively. ous realizations of the sé#(x)}. Now, x, in Eq. (75) at any
Our simulation techniques are straightforward. For casdiVen time is usually a continuous variable and may not cor-

(i) above we use the time discretized version of the Rous&SPond to a grid point. In fact, in generg|will be between

chain model, i.e., Eqs20) and (21). We sett,,=mAt and two grid points, sa), andx,+Ax. In such a case, we use, as
rewrite Egs.(20) and (21) as a conventionyp(xy) while simulating the rhs of Eq76). For

a fixed realization of the disorddp(x)}, we average over
30-40 thermal historiegyenerated viap;) and then a final
average is done over 30-40 disorder realizations.

Using this discretization scheme we have computed the
incremental correlation functiol©,(t,t,,t;) as defined in
Eqg. (74) beyond some large waiting timg (typically tg
~ 30 000 stepysfor different choices of time steppt and the
grid size Ax. We have checked that the results do not vary
much with the time step or the grid size. We find that, as
predicted analyticallyC,(t,t,,to— ) depends only on the
time differencelt,—t;| and for large|t,—t,|, C, scales as a
power law with an exponent1.75 which is consistent with
the theoretical prediction 7/4. A plot @, as a function of
|t,—t4] is shown in Fig. 2. This confirms numerically the
07 1 D) 160 1600 76000 theoretical prediction that indedd is a FBM with the Hurst

t exponentH,=7/8 andhence also confirms that the persis-

FIG. 3. Log-log plot of the incremental correlation function tence exponenﬂg:;l./& .
Cy(|t,—t1| =t) vst whenh; evolves via thé1+1)-dimensional KPZ we als_o nhumerically computed the _!ncr_emental correla-
equation. The chain length 8=4096, whileAt=0.1 andAx=0.5. tion function C2(t1't2’t0_H°°) 'for case (ii), |.e.., whenhy
The theoretical prediction is the straight line that corresponds to £volves by the(1+1)-dimensional KPZ equation. For the
power law int with a power 5/3=1.67, while a straight line fit to  (1+1)-dimensional KPZ equation in E§66), one needs to
the numerical datéshown by+ signg gives an exponent1.695.  be careful about the discretization of space and time as has
This slight discrepancy is commented upon in the text. been discussed extensively in the literat[48—47. In this

have checked this prediction numerically =1 for two
cases:(i) when the first surface evolves via the Edwards-
Wilkinson equation so thaB;=1/4 and Eq.(74) predicts

Cy(ty,tp, tg— ) ~ [t,—t,| 4 for large|t,—t,|. This case corre-
sponds also to the Rouse chain advected by a transverse

100000 |

1000 ¢

01

0.001
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paper we used the discretization scheme proposed by Newaodel describes the equations of motion of a Rouse polymer
man and Swiff45] with periodic boundary condition, chain in two dimensions in presence of a transverse velocity

~ field.
hl(x”’tm”)_maihl(xm’tm)’hl(x”‘l’t”‘)’hl(X”’tm)] We have obtained analytical results for the persistence
+ VAt (X t) - (77)  properties in this model. The main result of this paper is to

, . . ) . show analytically that after a long waiting tinig— =), the
We show in Fig. 3 the incremental correlation function ,.,ceqdy ‘at a fixed point in space but as a function of time,
Collto~ta|=t,tp—<2) vs t. Evidently C,(t) increases as a pecomes a fractional Brownian motion with a Hurst expo-
power !aw with an exponernt1.695 Wh_lch |s_close to thg nentH,=1-3,/2. By using a known first-passage property
theoretical prediction 5/31.67. The slight discrepancy is ot fractional Brownian motion we have then shown that after
due to the system size used by us, for which even the scaling long waiting timet,— =, the persistence probabili,(t)
exponentg, for h, actually is not exactly 1/3 but close _to that the procesh, at a fixed point in space does not come
~0.305. We have checked that the exponent systematlcallgack to its value at, over the time intervality, to+t] decays

approaches the expected value with increasingnd here -7
our quoted value is based on the larghsthat we could 25 & power law for large, Py(t)~t™" where the exponent
simulate. #:=1-H,=p,/2. Ford=1, these analytical predictions have

been verified numerically in two cases: whienevolves via
the Edwards-Wilkinson equation and whép evolves via
the Kardar-Parisi-Zhang equation.

In this paper we have studied the time-dependent proper- The mapping of a relevant stochastic process in some lim-
ties in a simple model of coupled interfaces characretized bits to a fractional Brownian motion is a rather powerful tech-
heights h; and h,, respectively, growing over a nique for studying the first-passage properties for non-
d-dimensional substrate. The evolution of the first interfaceGaussian and/or non-Markovian processes. The mapping
h, is not affected byn,. In fact,h; can be any generic grow- does not work always, but if it works one can use the known
ing interface characterized by a growth expongat For  first-passage property of the fractional Brownian motion.
example, h; may be evolving either via the Edwards- This technique has been used successfully in a number of
Wilkinson equation or via the Kardar-Parisi-Zhang equationcontexts previously13,20-22,26,2)7 We have demonstrated
The evolution of the second interfabg however, is coupled that the same technique also works in another class of
to that ofh; by a transverse quenched random velocity field,coupled interface models discussed in this paper. It would be
in addition to having the usual Edwards-Wilkinson dynam-interesting to find other such cases where one can apply the
ics. In the limiting cased— 0, our model reduces to the same technique successfully. Finally, it would be interesting
Matheron—de Marsily model where one studies the motion ofo study the persistence properties in more realistic models of
a Brownian particle in a two-dimensional plane in the pres-coupled interfaces that are closer to the experimental situa-
ence of a transverse velocity field. In the lindt1, our tion of fluctuating step§28].
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